本文描述了一种利用驱动齿轮箱的感应电机测得的相位电流来识别局部轮齿缺陷(如点蚀)的方法。基于多尺度熵(MSE)算法SampEn的一种新的异常检测工具,它允许在多个时间尺度上识别信号中的相关性。电机电流特征分析(MCSA)结合主成分分析(PCA),并将观察值与使用名义健康数据建立的模型预测值进行比较。仿真结果表明,该方法能够检测电流信号中的齿轮点蚀。
深度学习的必要性:智能制造背景下,机械设备趋于复杂庞大,海量、多源、高维度、非结构的工业数据给系统管理监测带来更大难度,设备的故障诊断与预测更显重要。传统故障诊断与预测方法难以建立准确的数据模型,在设备故障诊断预测应用方面受到很大局限,深度学习以其强大的自主学习非线性数据表示和模式识别的能力在许多领域都有重大突破,在工业设备的故障诊断与预测领域也得到广泛关注。
轴承广泛应用于经济的各个领域。在国民经济中,他们主要涉及农业、采矿业、制造业、电力、热力、水生产和建筑业、交通运输、邮政服务等许多行业。它们用于汽车、农业机械、工业生产(加工工具)、矿山钻机、制造业纺织机械、建筑业起重机、各种传动装置等。轴承行业作为机械工业的基础和支柱,其发展水平往往代表或制约着一个国家机械工业及其他相关产业的发展水平。
1、正常状态频谱显示1X和2X转速频率和齿轮啮合频率GMF。 2、齿轮啮合频率GMF通常伴有旋转转速频率边带。 3、所有的振动尖峰的幅值都较低,没有自振频率。
本文整理了十五种常见的振动故障及其特征频谱: 不平衡,不对中,偏心转子,弯曲轴,机械松动,转子摩擦,共振,皮带和皮带轮,流体动力激振,拍振,偏心转子,电机,齿轮故障,滚动轴承,滑动轴承。
通过大数据分析能够有效发现问题间的关联性,但对于挖掘问题之间的因果性却相对乏力,而后者恰恰是工业领域实现智能化转型的关键。要实现对于问题因果性的挖掘,就需要结合工业机理知识,在深入了解系统结构和运行逻辑的基础上进行分析及预测。具体到应用的关键点,最核心的一部分是故障预测与健康管理(PHM)。
为有效地获取滚珠丝杠副精度寿命特征, 利用滚珠丝杠副磨损特征建立加速退化模型, 并且根据设计的试验装置和试验过程的摩擦力矩值变化情况, 采用参数估计方法进行退化数据的统计分析, 获得不同应力水平下的滚珠丝杠副加速退化参数模型。
通过加速度计和传声器采集数据,实现更准确、鲁棒的轴承故障诊断。该方法从原始振动信号和声学信号中提取特征,并利用基于1d - cnn的网络进行融合。在十组轴承上获得的大量实验结果用于评估所提出方法的性能。通过分析不同信噪比下的损失函数和准确率,经验发现该方法比基于单模态传感器的算法具有更高的诊断准确率。此外,还进行了可视化分析,探讨了所提出的基于1d - cnn的方法的内部机制。
没有账户,需要注册
163页化工动设备讲义(PPT),163页化工动设备讲义(PPT),163页化工动设备讲义(PPT)
本工程建筑为办公生产大楼,由地上32层、地下3层组成;其中1-5层为裙楼、6-32层为塔楼。地下1-3层含停车场、人防、设备用房;地上部分:主楼一层含公共大厅;5为设备转换层,11、22层为避难层,33层设置机房;6-10层、12-21层、23-32层为办公生产用房。
随着能源互联网的发展,能源系统智能化特征越来越突出,能 源开发、生产、传输、存储、消费 全过程的智能化水平快速提升,所 涉及的设备和系统将数以亿计,在 规划和运行过程中将产生海量数据, 且结构复杂、种类繁多、因实时性 要求高而快速增长。这些数据贯穿 着能源互联网各个环节,蕴含着巨 大的价值。
技术开发的迭代推进和技术应用的规模化积累,在推进数字技术不断取得新突破的同时,也使数字技术变得更加成熟和可靠。数字技术的先进性、复杂性、集成性与数字化系统覆盖面更广、界面更直观、操作更简单同步发展。人们能够随时随地访问功能越来越强大的数字化系统。
近年来,冷链物流业的发展一直受到高度重视。国家不断出台一系列支持其发展的政策和标准。随着政策的不断实施和相关标准体系的逐 步完善,冷链物流即将转向高门槛、新基础设施、大整合、强监管的转变,迎来高质量发展的新阶段。
2024上海未来制造白皮书,2024上海未来制造白皮书,2024上海未来制造白皮书,2024上海未来制造白皮书,2024上海未来制造白皮书
2024上海低空经济发展白皮书,2024上海低空经济发展白皮书,2024上海低空经济发展白皮书,2024上海低空经济发展白皮书
2024年设计行业AI应用调研报告-D5渲染器&青年建筑,2024年设计行业AI应用调研报告-D5渲染器&青年建筑,2024年设计行业AI应用调研报告-D5渲染器&青年建筑
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南