Energy基于自关注机制的CNN-LSTM模型的油井产量预测
为了克服目前油井产量预测研究中的不足,我们提出了一种结合卷积神经网络(CNN)、长短期记忆(LSTM)神经网络和自我注意机制(SA)的组合模型(CNN-LSTM-SA)。CNN-LST’M-SA模型由五个部分组成:输入层、CNN模块、LS’T’M层、自我关注层和输出层。在该模型中,CNN用于提取输入数据的时空特征,LSTM用于提取相关信息,SA用于捕获内部相关性。与传统的机器学习方法相比,如线性回归(LR)支持向量机(SVM)、随机森林(RF)、XGBoost和反向传播(BP)神经网络;以及LSTM、LST'M-SA和CNN-LSTM等深度学习方法,CNN-LSTM-SA模型可以更全面地提取油井生产数据中隐藏的时空特征。它能够更精确地挖掘油井生产数据中的内部相关性,从而提高油井生产预测的准确性。更具体地说,在现有的方法中,CNN-LSTM-SA模型在适应油井生产的基本趋势和预测油井生产的具体值方面表现最佳。卷积神经网络、长短期记忆、自我注意机制、油井生产、预测