• 首页

  • 方案库

  • 工业品库

  • 招标项目库

  • 专家库

  • 人才库

会员中心
搜索
登录
注册
  • 方案名称

解决方案

数字化转型通用方案行业方案安全方案大数据人工智能物联网行业展望自动控制其他

产品|技术

白皮书产品介绍技术介绍技术创新模型算法

政策|规范

政策规范行动计划

电子书

电子书课件

报告|论文

报告模板论文
  • 全部
  • 人气排行
  • 下载排行
  • 页数排行
  • 最新排行

【专家PPT】深化“互联网+先进制造业”加快工业互联网创新发展(55页 PPT)

工业互联网,源于工业发展的内生需求和互联网发展的技术驱动,而归根结底,是生产力发展的必然结果;工业互联网,源于工业发展的内生需求和互联网发展的技术驱动,而归根结底,是生产力发展的必然结果

  • 2024-05-13
  • 阅读192
  • 下载1
  • 56页
  • pptx

【专家PPT】林咏华:以工业互联网驱动农业产业数字化发展

【专家PPT】林咏华:以工业互联网驱动农业产业数字化发展,【专家PPT】林咏华:以工业互联网驱动农业产业数字化发展

  • 2024-05-13
  • 阅读183
  • 下载0
  • 18页
  • pdf

【专家PPT】方国强:智慧港口场景下的5GSA安全解决方案

【专家PPT】方国强:智慧港口场景下的5G SA安全解决方案,【专家PPT】方国强:智慧港口场景下的5G SA安全解决方案,【专家PPT】方国强:智慧港口场景下的5G SA安全解决方案

  • 2024-05-13
  • 阅读184
  • 下载0
  • 15页
  • pdf

【专家 PPT】融合新一代信息技术的中国制造业数字…级关键技术与应用-孔宪光

新一代智能制造产生出了真正的大数据,人— -信息——物理三元融合,新基建助推新一代智能制造发展。新一代智能制造产生出了真正的大数据,人— -信息——物理三元融合

  • 2024-05-13
  • 阅读159
  • 下载0
  • 47页
  • pptx

【IEEETII】基于时空注意力孪生网络的有限传感器数据风机叶片结冰检测新方法

本文主要研究风力涡轮机叶片结冰检测(ID)的数据驱动方法。鉴于传感器技术在风力涡轮机中的广泛应用,这种数据驱动的ID方法变得越来越突出。然而,目前的方法存在不足,特别是在确认多元传感器数据的结构特性和区分结冰阶段方面,这两个方面对识别故障模式都至关重要。为了弥补这些差距,我们提出了一种用于刀片ID的时空注意力孪生网络(SN)。该模型采用孪生网络架构,在类不平衡的情况下进行高效的少镜头学习。它独特地结合了图注意力网络和门控递归单元,用于从传感器数据中提取时空特征。这种设计不仅承认了数据的空间结构,而且清楚地识别了与各种结冰阶段相关的特征。使用来自监控和数据采集系统的实际传感器数据验证了STASN的功效。结果证明了SN识别不同结冰阶段特征的能力及其在早期结冰预测中的潜力。这项研究强调了SN在为叶片结冰提供先进、灵活的故障警报方面的实用性,代表了风力涡轮机维护和安全方面的重大进步。

  • 2024-05-11
  • 阅读290

【AppliedEnergy】一种具有准确性和可解释性的模糊时间序列风力发电预测模型

考虑到当前对风速预测模型的可解释性和有效性的研究,本研究提出了一种新的动态非平稳模糊时间序列预测模型。该模型旨在有效提高预测精度,解决可解释性低和数据预处理过多的问题。与现有的主流风速预测混合系统不同,该模型几乎为每个预测步骤提供了详细的解释,并消除了繁琐的数据预处理步骤的需要。为了提高所提出模型的预测精度,本研究结合了非平稳集,以克服模糊时间序列在适应长期变化方面的局限性。所开发的算法SFTSM动态调整模糊时间序列预测,以有效应对长期预测挑战。此外,本研究引入了人工蜂鸟算法的增强版本,称为SLG-AHA,以进一步提高模糊时间序列预测的准确性和稳定性。利用中国山东蓬莱风电场的数据进行的实验结果验证了该模型的有效性,显示了其优越的预测精度和稳定性。

  • 2024-05-11
  • 阅读239

【ASC】滑动窗口双通道CNN(SWDC-CNN):一种同步预测水泥煅烧过程煤耗和耗电量的新方法

作为加工业的代表,水泥行业消耗了大量的煤电资源。这主要是由于水泥行业内部粗生产和各能耗指标独立统计造成的能源调度不合理。能耗的同步精确预测可以为生产控制过程和能源调度提供更有效的方案。然而,由于生产的时间延迟、变量耦合和不确定性,很难同步预测多个指标。本文提出了一种结合滑动窗口和双通道卷积神经网络(SWDC-CNN)的数据驱动预测方法,以实现未来5分钟的煤耗和电力消耗同步预测。滑动窗口方法用于提取时间序列数据的时变延迟特性,以克服其对能耗预测的影响。通过设计双通道结构,减少了弱相关变量之间冗余参数对能量预测的影响。我们在山西省的实际水泥生产数据上试验并比较了支持向量机(SVM)、极限梯度提升(XGBoost)、递归神经网络(RNN)、长短期记忆(LSTM)和门递归单元(GRU)等优秀模型。实验结果表明,所提出的SWDC-CNN模型性能良好,预测精度最高,能够满足预期要求。

  • 2024-05-11
  • 阅读325

【EAAI】使用1D-CNN和BiLSTM进行时间序列预测的教程:参见峰值需求和系统边际价格预测的示例

尽管基于深度学习的时间序列预测研究正在各个行业积极开展,但深度学习技术对于没有计算机科学专业的研究人员来说仍然有很高的进入门槛。本文介绍了使用基于深度学习的模型进行时间序列预测的教程。介绍了时间序列数据预测的全过程——从数据采集到预测结果评价。通过使用1D-CNN和BiLSTM模型预测韩国济州岛峰值电力需求和系统边际价格的实例,展示了每个步骤的细节。在济州岛,2021年可再生能源在总发电量中的比例提高到67%,需要更准确的电力需求预测。因此,使用2018年2月808天的培训数据,预测了未来21天的电力需求和SMP。为了让读者更容易理解,该示例仅使用开放的公共数据,整个Python源代码通过GitHub存储库共享。WRMSSE计算的预测误差为0.42的电力需求和0.63的SMP最大值。WRMSSE值小于1意味着预测相对较好,即优于天真的预测。本教程不仅限于能源行业,还可用于任何需要时间序列数据预测的应用程序。这篇文章有望对需要了解使用深度学习进行时间序列预测的过程并将其应用于行业的研究人员有很大帮助。

  • 2024-05-11
  • 阅读930
上一页 1 …… 104105106107108109110111112113114 …… 2876 下一页 共 23002 条


立即登录

没有账户,需要注册

登录用户可享受以下权益
  • 免费下载方案
  • 服币提现
  • 发布方案得服币
  • 交易分成

精品推荐

2025年车路云一体化系统云控基础平台功能场景参考架构报告2.0

汽车智能化网联化融合发展已经成为全球政府、产业界的发展共识,各国通过升级政策法规、推动测试示范、加速创新应用等方式推动智能网联汽车产业发展。2024年1月,我国启动智能网联汽车“车路云一体化”应用试点,推动车路云一体化从技术验证迈向规模化应用。

  • 阅读121
  • 下载2

2025年中国新锐品牌全球成长白皮书

过去十年,中国消费市场的高速迭代催生了一批极具活力的新锐品牌。它们凭借对消费趋 势的敏锐洞察、柔性灵活的供应链体系以及成熟的数字化运营能力,在国内细分市场中迅 速崛起,创造了一个又一个“爆款神话”。

  • 阅读103
  • 下载2

中服云多模态工业物联网平台介绍

中服云作为国内著名的专业工业物联网平台系列产品提供商,历经十余年深耕发展,已构建起成熟的全系列多层次产品体系,精准适配不同行业、不同规模用户的差异化需求。凭借在工业数据采集、边缘计算、人工智能、数字孪生等领域的深厚技术积累与持续创新,中服云已为海量工业企业提供了稳定可靠的数字化转型解决方案。平台支持云端SaaS在线部署与用户现场私有化部署两种模式,既满足中小企业轻量化、低成本的在线使用需求,也保障大型企业对数据安全、定制化服务的高标准要求。

  • 阅读112
  • 下载0

中服云工业物联网平台数字孪生版技术原理与功能介绍

中服云数字孪生平台以物联网平台+数据中台为坚实基础,以2D/3D/GIS为核心展示形式,致力于打造一个从设备原始数据到孪生应用落地的一站式数智化平台。

  • 阅读160
  • 下载5

最新上线

人工智能赋能教育高质量发展

从知识传授者到引导者:知识哪里获取、如何获取、如何应用AIGC技术使教师从传统的知识传授者转变为学习引导者,更多地关注学生的个性化学习需求。

  • 阅读19
  • 下载1

2025年度低空经济投资策略

市场担心十四五期间国内无人机采购费用增速不及预期。我们认为:无人机是未来战争关键环节,当前我国军用无人机装备处于起步阶段。我们预计十四五未期我国军用无人机采购费用有望快速增加。

  • 阅读27
  • 下载0

数字档案馆标准建设方案

XX数字档案馆项目实施的过程中,将涉及到档案馆多个职能部门、多个立档单位及参与项目建设的其他单位,档案馆应建立力量强大、耶责明晰的项目建设和管理杌构,确保项目实施过程中冬个环节之间能够有条不紊的协调工作,将项目实施风险控制在最低程度。

  • 阅读39
  • 下载0

智慧物流园区信息化趋势

区别于传统消防联网模式,在符合GB50440要求的同时,将互联网思维融入消防信息化管理,将离散在园区各个消防设施实时状态信息有效整合在统一系统上。

  • 阅读81
  • 下载0
  • 关于我们

    电话:029-8838-6725

  • 新闻资讯

    企业简介 新闻动态 品牌实力 代理合作 诚聘英才 联系我们

  • 中服云

  • 工业互联网风向标

  • 在线咨询

西安/北京/南京/重庆/合肥/厦门/甘肃 地址:陕西省西安市雁塔区鱼跃工业园慧康生物科技产业园7楼 电话: 029-8838-6725

版权所有 @ 中服云 陕ICP备11002812号
  • 扫码咨询

    或

    点击立即咨询
  • 客服咨询

  • 用手机扫二维码

    或

    复制当前地址

  • 问题反馈 中服大讲堂 客服电话

方案库赚钱指南