分类算法(Classification)的目标 ? 分类算法的目标是找到每个样本特征到类别 的对应法则。 ? 前提是类别是已存在,即是有标签的数据, 属于有监督学习类型。 ? 典型应用:信贷审批、目标市场、医疗诊断、 欺诈检测等。
什么是聚类(Clustering)? ? 簇(Cluster): 数据对象的集合,同一簇中的对象之间彼此 相似,不同簇之间的对象相异。 ? 聚类分析:把大型数据划分成不同的簇。 ? 聚类是无监督分类: 没有事先定义好的类别。
在大数据分析中,回归分析是一种预测性的建模 技术,它研究的是因变量(目标)和自变量(预测 器)之间的关系。这种技术通常用于预测分析、时 间序列模型以及发现变量之间的因果关系。
数据描述性分析 用统计学方法,描述数据的统计特征量,分析数 据的分布特性。 主要包括数据的集中趋势分析(Central tendency)、 数据离散趋势分析(Dispersion tendency)、数据的频 数分布(Frequency distribution)等。
Spark是基于分布式数据集的概念的,可以包含任意的Java、Python对象。 我们只需要基于这些外部数据构造数据集,然后对这些数据集进行并行操 作。Spark API的基础构件是RDD API,在RDD API之上,又提供了高层的API 供使用,例如DataFrame API,机器学习API。这些更高层次的API提供了特 定数据操作的方法,本部分将通过若干例子说明最简单的Spark应用,展示 Spark的强大功能。
MapReduce的具体应用 基本思路: ? 在map阶段, 把关键字 作为key输出,并在 value中标记出数据是 来自data1还是data2; 在shuffle阶段会自然按 key分组; ? reduce阶段,判断每一 个value是来自data1还 是data2,在内部分成2 组,做集合的乘积。
相关概念与术语 ? Application:指用户编写的Spark应用程序,其中包括一个Driver功能的 代码和分布在集群中多个节点上运行的Executor代码; ? Driver: Spark中的Driver(包含Application的main函数)创建 SparkContext对象,准备Spark应用程序的运行环境,SparkContext负责与 ClusterManager通信,进行资源申请、任务的分配和监控等; ? Executor: Application运行在worker节点上的一个进程,该进程负责运行 一些Task, 并且负责将数据存到内存或磁盘上,每个Application都有各 自独立的一批Executor;
Spark是UC Berkeley AMP lab (加州大学伯克利分校的AMP 实验室)所开发的类Hadoop MapReduce的通用并行框架;可用来构建 大型的、低延迟的数据分析应用程序。
没有账户,需要注册
国内重点工业物联网平台四类厂商分类及选型指南
工业物联网平台发展重点: 一是行业深耕化,从通用型平台向“一米宽、百米深”的行业垂直平台转型,聚焦能源、交通、化工等领域的特定需求,沉淀场景化解决方案与行业Know-how,而非追求“大而全”的覆盖能力。 二是智能融合化,工业大模型与平台深度结合,实现工业知识的智能化重构、应用开发的低代码化升级,以及生产运营的自感知、自决策、自优化闭环管控,AI成为提质增效的核心变量。 三是生态协同化,平台不再是单一技术载体,而是串联产业链上下游的协同中枢,通过跨系统数据融合、产学研用金深度合作,形成“数据-算力-应用”的生态闭环,赋能供应链协同与产业集群升级。 四是部署灵活化,采用“平台化产品+私有化部署”结合的模式,兼顾中小企业轻量化需求与大型集团定制化诉求,支持公有云、私有云、边缘端的混合部署,平衡成本与安全性。
当前,世界百年变局加速演进,新一轮科技革命和产业变革?深入发展,低空经济作为新质生产力的重要组成部分,正以前瞻?性、引领性姿态加速崛起,成为推动经济结构优化升级、塑造高?质量发展新动能的关键领域。
首先从华为的视角总结了企业对于数字化转型的应有的共识,以及从战略角度阐述了华为为何推行数字化转型,然后给出了华为数字化转型的整体框架(方法论),以及企业数字化转型成熟度评估的方法,帮助读者在厘清华为开展数字化转型工作的整体脉络的同时,能快速对自身的数字化水平进行自检,
全球数字治理蓝皮书(2025)全球数字治理蓝皮书(2025)全球数字治理蓝皮书(2025)全球数字治理蓝皮书(2025)全球数字治理蓝皮书(2025)全球数字治理蓝皮书(2025)
当前,人类正处在新一轮科技革命和产业变革的历史关口,人工智能正以前所未有的速度重塑世界,为千行万业注入新动能。从工业制造的智能产线到农业生产的精准种植,从金融服务的智能风控到医疗健康的远程诊断,人工智能推动着生产效率的跃升与产业形态的迭代。正如《指南》所展望的那样,未来,随着网络通信、前沿算法、存储算力等多元技术的深度融合,以及海量数据与前沿知识的双重加持,人工智能将彻底突破单一技术工具的局限,蜕变为贯穿千行万业生产链条的关键枢纽,融入千家万户的日常起居,成为人类社会高效运转不可或缺的底层支撑。
新能源场站无人值班建设方案新能源场站无人值班建设方案新能源场站无人值班建设方案新能源场站无人值班建设方案新能源场站无人值班建设方案新能源场站无人值班建设方案
零碳工厂建设与热能高效利用一事一议破局“零碳”技术路线零碳工厂建设与热能高效利用一事一议破局“零碳”技术路线零碳工厂建设与热能高效利用一事一议破局“零碳”技术路线零碳工厂建设与热能高效利用一事一议破局“零碳”技术路线
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南