人工智能开发的另一个真正有趣的领域是生成性应用,基本上指能从特定类型输入为给定应用生成某些东西的人工智能。
人工智能产业链主要包括基础层软硬件、技术层算法和智能技术、应用层产品服务和解决方案,从应用层看人工智能产业发展主要呈现智慧城市、智慧生产、智慧生活三大类应用领域。
未来我们将在现有成果的基础上,不断深化发展,将AI 技术应用到其它一些GIS传统业务中,如道路中心线提取。随着人工智能技术不断蓬勃发展及与GIS结合不断深入,未来GIS将会更加智能。
智能制造技术是将传统制造技术,与人工智能技术的有机结合,是面向产品全生命周期,实现泛在感知条件下的信息化制造,人工智能本身技术的逐步成熟以及它在制造业中的成功应用,是制造业实现智能化的关键技术保障。
人工智能作为信息技术的高阶应用,正在推动着教育教学改革与教育创新向更深层次发展。人工智能给现今的教育带来了机遇和挑战。人工智能取代简单重复的知识传授和记忆,利用各种智能感知设备和技术改变我们的校园生活,通过语音与图像识别系统不断改变学生的学习方式,数据采集和分析系统使学校管理更优化。
云计算所打造的智慧校园,让教育教学全场景数据贯通,用人工智能使师生减负增效,促进人性化人才培养策略提升教育治理水平,全力推动信息技术与教育教学深度融合,推进优质教育资源共建共享。
大数据和人工智能的发展还需要两个重要的基础,分别是物联网和云计算,物联网不仅为大数据提供了主要的数据来源渠道,同时也为人工智能产品的落地应用提供了场景支撑,而云计算则为大数据和人工智能提供了算力支撑。所以,从事大数据和人工智能领域的研发,也需要掌握一定的物联网和云计算知识。
大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
没有账户,需要注册
当前,世界百年变局加速演进,新一轮科技革命和产业变革?深入发展,低空经济作为新质生产力的重要组成部分,正以前瞻?性、引领性姿态加速崛起,成为推动经济结构优化升级、塑造高?质量发展新动能的关键领域。
首先从华为的视角总结了企业对于数字化转型的应有的共识,以及从战略角度阐述了华为为何推行数字化转型,然后给出了华为数字化转型的整体框架(方法论),以及企业数字化转型成熟度评估的方法,帮助读者在厘清华为开展数字化转型工作的整体脉络的同时,能快速对自身的数字化水平进行自检,
汽车智能化网联化融合发展已经成为全球政府、产业界的发展共识,各国通过升级政策法规、推动测试示范、加速创新应用等方式推动智能网联汽车产业发展。2024年1月,我国启动智能网联汽车“车路云一体化”应用试点,推动车路云一体化从技术验证迈向规模化应用。
过去十年,中国消费市场的高速迭代催生了一批极具活力的新锐品牌。它们凭借对消费趋 势的敏锐洞察、柔性灵活的供应链体系以及成熟的数字化运营能力,在国内细分市场中迅 速崛起,创造了一个又一个“爆款神话”。
近年来,AI?快速发展。算力、存力、运力以及模型能力的协同发展水平成为衡量地区数字竞争力的关键。算力支撑数据处理与计算,存力保障数据的高效存储与调用,运力保障数据的跨域传输,模型能力则深度释放算力在各场景的应用效能。综合算力是指以算力为核心、存力为基础、运力为纽带、模力为赋能、环境为发展保障的多维度协同能力体系,是衡量数字经济发展的核心生产力指标。如何更科学评估我国综合算力发展现状,全面把握区域产业短板与优势,成为推动数字经济高质量发展的重要命题。
2022年5月,全球首款全自动生成的32位RISC-VCPU"启蒙1号"由中国科学院计算技术研究所利用AI技术成功设计。AI的利用,将生产周期从数月降至5小时生成400万逻辑门,效率提升至1/1000,标志着芯片设计进入智能化时代
在新一轮科技革命和产业变革深入推进的背景下,高质量数据集已成为支撑人工智能发展和行业智能化转型的关键基础。近年来,国务院国资委围绕实施央企"人工智能+"行动和产业焕新行动,将高质量数据集建设作为提升中央企业智能化能力和核心竞争力的重要抓手,通过专题部署、示范发布和平台建设等方式,持续推动数据资源向可用、可管、可共享的数据资产转化。与
近年来,国家高度重视数据产业发展,将数据列为生产要素,并持续强化数据标准化工作。自2021年起,《国家标准化发展纲要》《“十四五”数字经济发展规划》《关于构建数据基础制度更好发挥数据要素作用的意见》等多项政策文件陆续出台,大力推动了公共数据、企业数据、个人数据的标准体系建设。2024年,国家发展改革委、国家数据
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南