本次分享是由湖南大学黄守道教授的报告,“大型风力发电机组健康管理技术”。该PPT分享仅做知识传播用途,如有侵权请后台联系小编删除。
介绍新型配电网智能感知与弹性增强优化调控技术,如增强弹性感知力的智能感知,含高比例分布式电源的配电网三相建模与潮流分析,配电网间歇性源荷接纳能力建模、分析评估与综合接纳能力提升等。
脱硫装置产生的废水经由废水输送泵送至废水处理系统,采用化学加药和接触泥浆连续处理废水,沉淀出来的固形物在澄清浓缩器中分离浓缩,清水排入厂区指定排放点,经澄清/浓缩器浓缩排出的泥浆送至板框压滤机脱水后外运。
工业监控和维护涉及多个业务流程,目的是以最低成本保持系统的运行状态。因此,我们经常谈到故障检测、故障诊断、控制和/或缓解措施的选择(预防性或纠正性),以及这些措施随时间的规划。这些步骤比喻性地对应于首先“感知”某些现象,然后“理解”这些现象,最后“采取行动”来应对这些现象。正如我们已经提到的,另一种方法(互补但不排他)并不是事后理解刚刚表现出来的现象(故障),而是尝试预见它们的发生,以便采取相应的保护措施。这就是“故障预测”的目标。“检测”、“诊断”和“预测”过程的相对位置如图1.5a所示
本文提出了一种用于复杂设备关键部件RUL的T2张量辅助多尺度Transformer,以捕捉多尺度时间模式。我们新颖地提出了时间数据和T2张量的张量化表示,并开发了一种高阶Transformer来提取T2张量的多尺度时间特征。针对该模型,提出了一种具有TRdecom位置的轻量级方法。他们提出的模型在准确性和效率方面具有卓越的能力。然而,我们提出的方法只是初步尝试,未来我们需要进一步研究数据处理,并将这种方法与分布式张量计算和云边缘协作等技术相结合,以提高模型的性能。
在本研究中,提出了一种新的基于KSLD TNet的轻量级深度学习模型,该模型可以有效地简化特征提取,增强对数据集中关键样本信息的提取。通过对关键样本的定位和提取,设计了一种基于传统Transformer网络的创新预测框架,从图书搜索的角度提高了工业过程的多步预测精度。两个真实的工业数据集证明了所提出的预测框架的优越性能。与最先进的方法相比,所提出的方法在多步预测精度和模型计算效率方面具有优势。由于该方法的样本简化机制可以减少模型计算量,因此更适合于工业大数据环境。在未来的研究中,我们将考虑如何使用本地化的关键样本进行扩充,以在小样本数据的背景下提高模型性能。
针对轴承全寿命周期数据获取困难、训练样本少的问题,提出一种基于关系网络的轴承剩余使用寿命 (Remaining useful life,RUL) 预测方法。
是常见的故障类型,以磨损和剥落为代表的局部故障占有较大比重。滚动轴承工作过程中滚动体与滚道不可避免地存在接触碰撞, 长期工作产生的接触疲劳会导致内滚道、外滚道和滚动体 出现裂纹继而引发剥落, 形成局部故障. 此外, 当滚动轴承出现轻载打滑或者过载时也会造成轴承磨损, 磨 损加剧后就会演变成局部故障.
没有账户,需要注册
成都市作为中国国家中心城市,秉承“创新、协调、绿色、开放、 共享”理念,运用 CIM 平台+免接口数据集成技术,打造城市大脑, 推行网络理政。通过接入市、区(市)县两级部门信息系统,融合政 府、企业和社会数据,以网络理政为城市大脑中枢,构建能在线监测、 能分析预测、能应急指挥的智能城市治理运行体系,提升城市治理能 力。
本书在实践积累与行业洞察基础上,试图对一系列关键问题做出解答:工业大模型与通用大模型有何不同?工业大模型的技术体系与关键技术何在?工业大模型赋能的重点领域和主要场景包括哪些?我国和全球工业大模型的产业生态如何?
集团版专为集团型企业打造,包括集团管控系统、工厂系统、开发发布系统、运维管理系统、网关系统5大子系统,旨在实现集团内部多工厂、多部门之间的协同管理和数据共享。它通过构建一体化的工业物联网平台,整合各工厂的生产、设备数据和资源,打造集团统一的工业操作系统底座,为集团提供统一的管理视角和决策依据,提升集团整体运营效率和协同效应。
在工业数字化转型的浪潮中,中服云工业物联网平台系列产品脱颖而出,为不同规模和需求的企业提供了全面、专业的物联网平台解决方案。该系列产品包含工业物联网平台基本版(SCADA)、工业物联网平台企业版、工业物联网平台集团版、数字孪生版和工业物联网平台设备版,各版本功能特色鲜明,重点突出。助力企业提升设备智能化水平和运行效率生产效率、优化管理流程、增强决策能力。?
本文创新性地将碳流理论和多属性评判理论融入需求响应策略的优化设计过程,妥善解决了潮流和碳流计算与策略优化生成的联动缺失问题,相较于未实施需求响应策略,通过遗传算法求解的最优需求响应策略的用户用电成本下降了7.14%,新能源消纳量增加了7.21%,碳排放强度下降了8.41%,对于保障电力系统的稳定性和安全性、提高电网侧以及用户侧的新能源消纳量以及资源利用效率具有重要的战略意义。
新型电力系统形态受中国能源电力发展目标牵引,需要落实在典型场景,以满足典型场景中的功能需求为目的。为此,需要充分发挥驱动力推动作用,实现新型电力系统形态科学发展,其驱动力包括模式创新、技术创新和机制创新。
挑战 科学知识呈指数级增长,专业化程度不断提高·跨学科合作需求增加,但知识壁垒阻碍学习与交流 ●自动文献管理与分析 ●Semantic Scholar有超过2.14亿篇论文 图表理解与信息提取。 ·结合图像、表格、公式和文本,分析复杂科学文献
计算范式从指令式到意图式转变:传统计算机需要精确的指令序列,而 LLM 可以理解模糊的人类意图并将其转换为具体操作。
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南