8、《指南》实施评估、问题和改进-32页,8、《指南》实施评估、问题和改进-32页,8、《指南》实施评估、问题和改进-32页
9、中国新环境管理下的CCUS发展-22页,9、中国新环境管理下的CCUS发展-22页,9、中国新环境管理下的CCUS发展-22页
55个国外CCUS项目,55个国外CCUS项目,55个国外CCUS项目,55个国外CCUS项目,55个国外CCUS项目
针对变压器故障特征选择困难和诊断模型准确率较低的问题,提出一种混合式故障特征选择方法,并利用改进北方苍鹰优化算法(improved northern goshawk optimization algorithm,INGO)优化深度混合核极限学习机(deep hybrid kernel limit learning machine,DHKELM)实现变压器故障诊断。首先,基于相关比值法构建24维变压器故障特征集,从线性相关和非线性相关的角度出发,采用Pearson相关系数和互信息法,筛除相关性较低的特征。其次,引入Logistic混沌映射、随机反向学习和自适应t分布变异改进NGO算法,提升其寻优性能。然后,利用INGO算法对保留特征进行二次筛选,获得最优输入特征。最后,将极限学习机自动编码器引入混合核极限学习机中,建立DHKELM诊断模型,利用INGO对DHKELM模型初始参数进行优化,完成INGO-DHKELM变压器故障诊断模型的构建。实验表明,与常规特征选择方法相比,利用混合式故障特征选择方法所选择的输入特征进行故障诊断能够有效提升诊断准确率;相较于其他优化型诊断模型,INGO-DHKELM具有更高的准确率和更好的稳定性。
变压器过载运行容易导致油纸绝缘系统产生气泡进而造成故障,但目前只以140 ℃作为热点温度限值,未能考虑实际运行状态对气泡起始温度的影响,难以充分发挥设备的最大利用效益。针对上述问题,综合国内外油纸绝缘气泡产生起始温度的试验提出了适用于实际工况下的变压器气泡产生起始预警温度计算方法。根据变压器的运行年限、油中水分含量和海拔等运行参数估算出变压器内部油纸绝缘系统产生气泡的起始温度。以该温度的90%作为预警温度,表征变压器能够承受的最大荷载能力。利用贝叶斯网络建立了短期负荷预测模型,结合绕组热点温度计算方法实现了变压器热点温度的短期预测。提出了一种变压器短期过载预警方法,并证实了该方法能够充分考虑变压器的运行实况,对未来的过载情况提前发出告警,指导相关运维部门开展变压器的过载停运和负荷转移工作,减少变压器停运和绝缘故障的发生。
武汉理工大学田猛副教授做了题为“Coordinated Repair Crew Dispatch Problem for Cyber-physical Distribution System”的报告,征得田猛副教授同意,特与您分享!
华北电力大学副校长王增平教授作了题为“极端天气对电力系统的影响及应对措施思考”的报告。征得王教授同意,特与您分享。
浙江大学黄莹教授作了题为“大规模新能源柔性直流送端系统构建关键技术”的报告,征得黄莹教授同意,特与您分享。
没有账户,需要注册
成都市作为中国国家中心城市,秉承“创新、协调、绿色、开放、 共享”理念,运用 CIM 平台+免接口数据集成技术,打造城市大脑, 推行网络理政。通过接入市、区(市)县两级部门信息系统,融合政 府、企业和社会数据,以网络理政为城市大脑中枢,构建能在线监测、 能分析预测、能应急指挥的智能城市治理运行体系,提升城市治理能 力。
本书在实践积累与行业洞察基础上,试图对一系列关键问题做出解答:工业大模型与通用大模型有何不同?工业大模型的技术体系与关键技术何在?工业大模型赋能的重点领域和主要场景包括哪些?我国和全球工业大模型的产业生态如何?
集团版专为集团型企业打造,包括集团管控系统、工厂系统、开发发布系统、运维管理系统、网关系统5大子系统,旨在实现集团内部多工厂、多部门之间的协同管理和数据共享。它通过构建一体化的工业物联网平台,整合各工厂的生产、设备数据和资源,打造集团统一的工业操作系统底座,为集团提供统一的管理视角和决策依据,提升集团整体运营效率和协同效应。
在工业数字化转型的浪潮中,中服云工业物联网平台系列产品脱颖而出,为不同规模和需求的企业提供了全面、专业的物联网平台解决方案。该系列产品包含工业物联网平台基本版(SCADA)、工业物联网平台企业版、工业物联网平台集团版、数字孪生版和工业物联网平台设备版,各版本功能特色鲜明,重点突出。助力企业提升设备智能化水平和运行效率生产效率、优化管理流程、增强决策能力。?
本文创新性地将碳流理论和多属性评判理论融入需求响应策略的优化设计过程,妥善解决了潮流和碳流计算与策略优化生成的联动缺失问题,相较于未实施需求响应策略,通过遗传算法求解的最优需求响应策略的用户用电成本下降了7.14%,新能源消纳量增加了7.21%,碳排放强度下降了8.41%,对于保障电力系统的稳定性和安全性、提高电网侧以及用户侧的新能源消纳量以及资源利用效率具有重要的战略意义。
新型电力系统形态受中国能源电力发展目标牵引,需要落实在典型场景,以满足典型场景中的功能需求为目的。为此,需要充分发挥驱动力推动作用,实现新型电力系统形态科学发展,其驱动力包括模式创新、技术创新和机制创新。
挑战 科学知识呈指数级增长,专业化程度不断提高·跨学科合作需求增加,但知识壁垒阻碍学习与交流 ●自动文献管理与分析 ●Semantic Scholar有超过2.14亿篇论文 图表理解与信息提取。 ·结合图像、表格、公式和文本,分析复杂科学文献
计算范式从指令式到意图式转变:传统计算机需要精确的指令序列,而 LLM 可以理解模糊的人类意图并将其转换为具体操作。
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南