基于变分模态分解和改进鲸鱼算法优化的模糊神经网络风速预测模型_李志鹏
风速预测在风电场安全并网和智能化管理中起着决定性作用,针对风速的非线性和不稳定等特点,提出了一种基于变分模态分解(VMD)和改进鲸鱼算法优化的模糊神经网络(VMD-CGWOA-ANFIS)的混合预测模型。该模型首先使用变分模态分解技术将原始风速序列分解为一系列子序列,而后对各子序列分别采用模糊神经网络(ANFIS)建立预测模型。为进一步提高预测精度,同时克服鲸鱼(WOA)算法容易陷入局部最优和收敛过早的缺点,引入共轭梯度算法(CG)对WOA进行改进,利用改进的CGWOA算法对ANFIS参数进行优化。使用优化后的ANFIS分别对变分模态分解后的各子序列进行预测,最后将预测后的各子序列叠加得到最终预测结果。为测试模型的有效性,选择宁夏地区3组实际风电数据进行模拟试验,将ANFIS,VMD-ANFIS,VMD-WOA-ANFIS与提出模型进行对比,结果表明所提出的混合模型预测精度明显高于其他对比模型。
- 2021-05-06
- 阅读181
- 下载0
- 6页
- pdf