大数据管理过程主要包括:数据转换、数据关联、数据丰富、数据操作以及数据保持。数据的存储周期越长,用于数据分析的样本数据就越多,越容易从长期的数据变化中发现规律。企业需要综合考虑数据分析实际需求、数据存储成本、数据管理成本等因素,实现企业成本效益的最大化。
Hadoop分布式文件系统(HDFS)被设计成适合运行在通用硬件(commodity hardware)上的分布式文件系统。它和现有的分布式文件系统有很多共同点。但同时,它和其他的分布式文件系统的区别也是很明显的。HDFS是一个高度容错性的系统,适合部署在廉价的机器上。HDFS能提供高吞吐量的数据访问,非常适合大规模数据集上的应用。HDFS放宽了一部分POSIX约束,来实现流式读取文件系统数据的目的。
面向5G无线异构网络的用户关联与资源管理
背景越来越多的公司正在建设数据仓库或数据湖,并开始集中他们的数据或者已经完成了数据集中项目,并正在努力使整个组织的数据服务自助化。这种方法有很多好处:?更灵活的分析和解释数据。?构建用户的完整画像。?数据堆栈变得更加模块化。当组织的数据越来越复杂时,灵活性是关键。我们希望将业务逻辑应用到数据中,例如构建自定义属性模型、仪表板和报告,以反映业务中最重要的指标,而不是基于供应商的行业的僵化模型。模块化为组织提供了选择和控制的能力,更主要是限制了供应商的锁定,组织可以为堆栈的每一层选择更好的工具,而不是依赖于一个供应商进行收集、存储和可视化数据。同时也带来了新的挑战:大量原始的、事件级的数据来自于大量的来源,这也就是数据建模的作用所在。二 什么是数据建模数据建模是使用业务逻辑聚合事件级数据以生成便于查询的“建模”数据的过程。当我们进行数据建模时,通常会聚合事件级数据。虽然每一行事件级数据代表一个单独的事件,但每一行建模数据代表一个更高阶的实体,例如工作流或会话,它本身由一系列事件组成。数据建模包括清理数据,例如删除测试记录或由IP地址识别的内部流量。它还包括创建关于数
在大数据集上训练的现代神经网络模型在许许多多领域都取得了显著的效果,从语音和图像识别到自然语言处理,再到工业界的应用,比如欺诈检测和推荐系统。但是这些神经网络的训练过程非常耗时。尽管近些年GPU的硬件技术、网络模型结构和训练方法均取得了很大的突破,但是单机训练耗时过久的事实仍无法回避。好在我们并不局限于单机训练:人们投入了大量的工作和研究来提升分布式训练神经网络模型的效率。
随着人工智能与深度学习的发展,大规模和超大规模的模型越来越受到业界的推崇。以NLP行业为例,从最开始的Bert-base只有1亿左右的参数量,到千亿级别的GPT-3,再到今年6月发布的目前全球最大预训练模型“悟道2.0”,参数规模达到惊人的1.75万亿,整个业界都由一种向更大模型发展的趋势。面对如此庞大的模型,必然也需要庞大的数据量才能进行训练,如果没有分布式训练的大算力加持,一个Epoch可能就要训练到天荒地老。抛开业界淬炼超大模型的场景,对于一个AI行业的普通算法工程师,面对日常的工作,分布式训练也可以大大加速模型的训练、调参的节奏、以及版本的迭代更新,在时间如此珍贵的当下,相信没有工程师会抗拒分布式训练带来的收益。因此,我们今天就聊聊深度学习中关于分布式训练的那些事儿。
深度神经网络网络计算框架基础
AI中台作为全栈式、集约化、自动化的生产力工具箱,是实现AI技术在各行业中快速研发、共享复用和部署管理的智能化底座和关键基础设施。白皮书旨在深入剖析 AI 中台体系架构与内涵,探讨能力建设路径和行业赋能方案,以期与业界分享,共同推动我国人工智能产业创新发展与行业智能化升级。
没有账户,需要注册
国内重点工业物联网平台四类厂商分类及选型指南
工业物联网平台发展重点: 一是行业深耕化,从通用型平台向“一米宽、百米深”的行业垂直平台转型,聚焦能源、交通、化工等领域的特定需求,沉淀场景化解决方案与行业Know-how,而非追求“大而全”的覆盖能力。 二是智能融合化,工业大模型与平台深度结合,实现工业知识的智能化重构、应用开发的低代码化升级,以及生产运营的自感知、自决策、自优化闭环管控,AI成为提质增效的核心变量。 三是生态协同化,平台不再是单一技术载体,而是串联产业链上下游的协同中枢,通过跨系统数据融合、产学研用金深度合作,形成“数据-算力-应用”的生态闭环,赋能供应链协同与产业集群升级。 四是部署灵活化,采用“平台化产品+私有化部署”结合的模式,兼顾中小企业轻量化需求与大型集团定制化诉求,支持公有云、私有云、边缘端的混合部署,平衡成本与安全性。
当前,世界百年变局加速演进,新一轮科技革命和产业变革?深入发展,低空经济作为新质生产力的重要组成部分,正以前瞻?性、引领性姿态加速崛起,成为推动经济结构优化升级、塑造高?质量发展新动能的关键领域。
首先从华为的视角总结了企业对于数字化转型的应有的共识,以及从战略角度阐述了华为为何推行数字化转型,然后给出了华为数字化转型的整体框架(方法论),以及企业数字化转型成熟度评估的方法,帮助读者在厘清华为开展数字化转型工作的整体脉络的同时,能快速对自身的数字化水平进行自检,
智算中心液冷技术概述智算中心液冷技术概述智算中心液冷技术概述智算中心液冷技术概述智算中心液冷技术概述智算中心液冷技术概述智算中心液冷技术概述
基于电碳量化关系的低碳园区建设方案基于电碳量化关系的低碳园区建设方案基于电碳量化关系的低碳园区建设方案基于电碳量化关系的低碳园区建设方案基于电碳量化关系的低碳园区建设方案
绿盟科技集团股份有限公司(以下简称绿盟科技),成立于2000年4月,总部位于北京。公司于2014年1月 29日在深圳证券交易所创业板上市,证券代码:300369。绿盟科技在国内设有50 余个分支机构,为政府、金融、运营商、能源、交通、科教文卫等行业用户与各类型企业用户,提供全线网络安全产品、全方位安全解决方案和体系化安全运营服务。公司在美国硅谷、日本东京、英国伦敦、新加坡及巴西圣保罗设立海外子公司和办事处,深入开展全球业务,打造全球网络安全行业的中国品牌。
2025年中央经济工作会议指出,我国经济基础稳、优势多、韧性强、潜能大,长期向好的支撑条件和基本趋势没有变,经济发展前景十分光明。面对全球经济格局。深度调整,国内居民财富持续积累与资产配置需求日趋多元化,中国财富管理市场机遇与挑战并存。
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南