随着新一代信息技术与先进制造技术的深度融合,智能制造成为新时代高端装备制造企业转型升级的重要途径。通过分析在数字经济浪潮下,高端装备行业的趋势和企业发展过程中面临的机遇与挑战,提出了通过智能制造实现制造业的转型发展道路的思考,并就企业如何推进智能制造规划和建设提出了具体的建议。
当前,新一轮科技革命和产业变革加速演进,推动数字经济蓬勃发展,世界经济数字化转型是大势所趋。国有企业作为中国特色社会主义经济的“顶梁柱”,要在数字经济发展中发挥积极作用,必须加快推进数字化转型。
2月25日消息,科技部正式印发《关于加强科技创新促进新时代西部大开发形成新格局的实施意见》(以下简称《意见》)。 《意见》要求,到2025年,西部地区创新环境明显改善,创新能力不断增强,创新产业加快发展。到2035年,西部地区创新格局明显优化,形成以科技创新引领大保护、大开放、高质量发展的新格局。
一些组织使用严重依赖大量历史数据的传统分析技术,新冠疫情袭来时,这些组织意识到了一件重要的事情:许多这些数据模型不再适用。实际上,新冠疫情改变了一切,导致许多数据毫无用处。 反过来,高瞻远瞩的数据团队和分析团队顺势而变:之前采用依赖“大”数据的传统AI技术,现在改而采用一类需要较少量但更多样化的“小”数据的分析技术。
本篇文章重点谈下企业数字化转型。重点还是围绕数字化转型的本质究竟是什么?企业如何进行数字化转型这两个关键点。 前面我谈得比较多的是云原生,微服务,中台等,而这些本身仅仅是数字化转型能力框架中的技术支撑平台底座。这个技术平台最终还是需要为业务目标和战略服务,因此搞清楚企业进行数字化转型的内在诉求才是最重要的。
本月初,曾于去年夏季推出高人气语言模型GPT-3的OpenAI研究小组再次公布一套名为DALL-E的全新AI模型。虽然它在热度上不及GPT-3,但却很可能对AI的未来发展拥有更加深远的影响。 简而言之,DALL-E能够将文本描述作为输入,据此生成原始图像输出。(DALL-E这一名称,源自对超现实主义艺术家萨尔瓦多·达利及皮克斯工作室创造的可爱机器人形象WALL-E的致敬。)
有一篇发表在arXiv的论文“Deep Learning and the Global Workspace Theory”提出了一个大胆的猜想(或理论)。两位作者认为,当下的深度学习已经可以基于一个意识模型,即“全局工作空间理论”(GWT),将处理不同模态转换的神经网络即功能模块,结合为一个系统,从而迈向实现通用人工智能的下一个阶段。总结成公式就是:GWT(深度学习)→通用人工智能。
当前,随着以“数字新基建、数据新要素、在线新经济”为特征的新一波数字经济浪潮全面来临,全球人工智能发展逐步从“探索期”向“成长期”过渡,在技术和产业上均进入重要的转型阶段。在此背景下,人工智能发展和数据安全问题日益深度交织融合,影响用户隐私、公民权益、商业秘密、知识产权、社会公平、国家安全等各个方面,数据安全问题已然成为人工智能全面新发展的重要制约瓶颈和亟需突破的关键挑战。
没有账户,需要注册
当前,世界百年变局加速演进,新一轮科技革命和产业变革?深入发展,低空经济作为新质生产力的重要组成部分,正以前瞻?性、引领性姿态加速崛起,成为推动经济结构优化升级、塑造高?质量发展新动能的关键领域。
首先从华为的视角总结了企业对于数字化转型的应有的共识,以及从战略角度阐述了华为为何推行数字化转型,然后给出了华为数字化转型的整体框架(方法论),以及企业数字化转型成熟度评估的方法,帮助读者在厘清华为开展数字化转型工作的整体脉络的同时,能快速对自身的数字化水平进行自检,
汽车智能化网联化融合发展已经成为全球政府、产业界的发展共识,各国通过升级政策法规、推动测试示范、加速创新应用等方式推动智能网联汽车产业发展。2024年1月,我国启动智能网联汽车“车路云一体化”应用试点,推动车路云一体化从技术验证迈向规模化应用。
过去十年,中国消费市场的高速迭代催生了一批极具活力的新锐品牌。它们凭借对消费趋 势的敏锐洞察、柔性灵活的供应链体系以及成熟的数字化运营能力,在国内细分市场中迅 速崛起,创造了一个又一个“爆款神话”。
近年来,AI?快速发展。算力、存力、运力以及模型能力的协同发展水平成为衡量地区数字竞争力的关键。算力支撑数据处理与计算,存力保障数据的高效存储与调用,运力保障数据的跨域传输,模型能力则深度释放算力在各场景的应用效能。综合算力是指以算力为核心、存力为基础、运力为纽带、模力为赋能、环境为发展保障的多维度协同能力体系,是衡量数字经济发展的核心生产力指标。如何更科学评估我国综合算力发展现状,全面把握区域产业短板与优势,成为推动数字经济高质量发展的重要命题。
2022年5月,全球首款全自动生成的32位RISC-VCPU"启蒙1号"由中国科学院计算技术研究所利用AI技术成功设计。AI的利用,将生产周期从数月降至5小时生成400万逻辑门,效率提升至1/1000,标志着芯片设计进入智能化时代
在新一轮科技革命和产业变革深入推进的背景下,高质量数据集已成为支撑人工智能发展和行业智能化转型的关键基础。近年来,国务院国资委围绕实施央企"人工智能+"行动和产业焕新行动,将高质量数据集建设作为提升中央企业智能化能力和核心竞争力的重要抓手,通过专题部署、示范发布和平台建设等方式,持续推动数据资源向可用、可管、可共享的数据资产转化。与
近年来,国家高度重视数据产业发展,将数据列为生产要素,并持续强化数据标准化工作。自2021年起,《国家标准化发展纲要》《“十四五”数字经济发展规划》《关于构建数据基础制度更好发挥数据要素作用的意见》等多项政策文件陆续出台,大力推动了公共数据、企业数据、个人数据的标准体系建设。2024年,国家发展改革委、国家数据
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南