为切实缓解迎峰度夏(冬)高峰用电阶段工业负荷调控压力,充分发挥市场在优化资源配置和电力保供中的作用,更好地保障民生用电和经济社会平稳发展,通过对接入电网的充电桩负荷安装智能采集设备,统一接入到市/县充电桩监测平台,以数字化方式对充电桩负荷进行智能监测,在迎峰度夏(冬)电力供需紧张阶段,通过差异化、个性化柔性调节响应策略,引导充电桩主动参与需求响应,减少高峰用电阶段负荷调控压力,保障民生、重要场所及重点企业用电需求,实现数智化助推节能降碳、绿色发展和保障用电安全。
本工程建筑为办公生产大楼,由地上32层、地下3层组成;其中1-5层为裙楼、6-32层为塔楼。地下1-3层含停车场、人防、设备用房;地上部分:主楼一层含公共大厅;5为设备转换层,11、22层为避难层,33层设置机房;6-10层、12-21层、23-32层为办公生产用房。
随着能源互联网的发展,能源系统智能化特征越来越突出,能 源开发、生产、传输、存储、消费 全过程的智能化水平快速提升,所 涉及的设备和系统将数以亿计,在 规划和运行过程中将产生海量数据, 且结构复杂、种类繁多、因实时性 要求高而快速增长。这些数据贯穿 着能源互联网各个环节,蕴含着巨 大的价值。
本工程为单缆无源系统,将为大楼提供全面无线通信信号覆盖,所设计的室内覆盖系统是为智能化大楼室内移动通讯信号覆盖的需要而提出的
为研究大气压下氮气火花开关的纳秒脉冲击穿过程,采用粒子模拟方法对间隙放电过程进行模拟,获得流注形成发展过程的瞬态物理图像,并对比分析了脉冲前沿对间隙放电过程的影响。模拟结果表明:氮气火花开关的纳秒脉冲击穿过程主要包括两个阶段:流注形成阶段和流注快速发展阶段;流注快速传播阶段流注头部会产生逃逸电子,且光电离反应会导致流注通道形成分叉;流注快速传播阶段的放电通道平均传播速度高于流注形成阶段;脉冲前沿越大,流注传播速度越小,流注形成的临界电压越低,流注贯穿间隙的时延越长,与实验结果一致。
针对输电线路异物检测中存在背景干扰、图像分辨率低且异物尺度变化大等问题,提出了一种基于改进YOLOv7的输电线路异物检测模型。首先,通过空间深度卷积(space to depth conconvolution,SPD-Conv)和多维协作注意力(multidimensional collaborative attention,MCA)机制构造新的骨干网络,加强模型对低分辨率图像特征提取及抑制背景干扰的能力,同时增加对小目标异物的关注度。其次,使用幻影卷积(ghost convolution,Ghost-Conv)改进高效分层聚合网络(efficient layer aggregation network,ELAN)的输出部分,大幅降低模型的计算量。最后,基于可伸缩交并比(scalable intersection over union,SIoU)优化损失函数,进一步提高模型的训练速度和鲁棒性。实验结果表明,所提模型在输电线路异物检测数据集上平均精度均值(mean average precision,mAP)达到95.98%,高于其他主流对比模型,同时每秒帧数(frames per second,FPS)达到64,满足输电线路异物的实时性检测。
伴随着气体火花开关的广泛应用,选择工作稳定且使用寿命长的气体火花开关已经成为了脉冲功率系统稳定运行的重要保障。目前,国内外相关学者对于气体开关展开了大量研究,但多数都是基于从放电条件研究对气体火花开关烧蚀的影响。因此从实际工程需求出发,全面研究了不同工作环境对气体火花开关的自击穿电压的分布、时延抖动、分散性的变化情况以及电极烧蚀现象与机制、宏/微观粗糙度变化规律。结果表明:相同气压条件下开关击穿电压的分散性随电极间隙的增大无明显规律变化。随着工作系数提高至90%,开关放电时延平均值基本不变,但呈现出数纳秒的波动,当间隙距离为10 mm、工作系数在60%以下时抖动的起始值及其减小的速率远高于其他间隙。随着电极间距的增大,对电极表面的烧蚀的影响较小,低气压长间隙的烧蚀程度相较于高气压短间隙的烧蚀更为明显。
AIoT(AI+IoT),即人工智能物联网,是人工智能技术与物联网在实际场景落地中相互融合的产物,其并非新技术,而是一种新的物联网应用形态,是通往真正意义上的“万物智联”的必经之路。智慧城市ICT信息技术架构与AIoT产业架构高度适配,是AIoT应用最佳实验场,随着智慧城市进入全面发展期,AIoT应用解决方案将在民生服务、城市治理、产业经济、生态宜居四大场景中大规模落地。
系统提供快捷的数据信息查询,实现对重点用能单位经济数据和能耗数据的预警和预测分析,进而实现对整个区域经济数据和能耗数据的预警和预测分析
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址