传统协同过滤算法存在严重的数据稀疏和冷启动问题。利用社交网络中的丰富信息为解决传统协同过滤算法的数据稀疏和冷启动带来了契机。然而,传统基于社交网络的协同过滤算法仅利用粗粒度、稀疏的用户信任关系来改进传统协同过滤算法,即用0或1表示用户之间信任程度。另外,传统基于社交网络推荐算法仅仅集成用户之间显式信任关系,而忽略用户之间隐式的信任关系。本文提出一种基于图嵌入模型的协同过滤推荐算法,即利用图嵌入模型技术学习社交网络中用户的低维特征表示,并根据用户的低维特征表示推导用户之间细粒度的信任关系。最后,根据信任用户和相似用户对目标物品的评分权重预测用户对目标物品的评分。在真实数据集上的实验结果表明,基于图嵌入模型的协同过滤算法的性能优于传统的协同过滤算法。