阿里云百炼是一款基于通义大模型的一站式大模型服务和应用构建平台。致力于 为企业和开发者提供高效、灵活的大模型解决方案。产品不仅涵盖了模型训练、 推理、部署等全链路开发工具,还提供了丰富的 Agent 应用开发工具,如 Prompt 工程、搜索增强等功能,助力用户轻松搭建多模态交互智能体。
本工程建筑为办公生产大楼,由地上32层、地下3层组成;其中1-5层为裙楼、6-32层为塔楼。地下1-3层含停车场、人防、设备用房;地上部分:主楼一层含公共大厅;5为设备转换层,11、22层为避难层,33层设置机房;6-10层、12-21层、23-32层为办公生产用房。
随着能源互联网的发展,能源系统智能化特征越来越突出,能 源开发、生产、传输、存储、消费 全过程的智能化水平快速提升,所 涉及的设备和系统将数以亿计,在 规划和运行过程中将产生海量数据, 且结构复杂、种类繁多、因实时性 要求高而快速增长。这些数据贯穿 着能源互联网各个环节,蕴含着巨 大的价值。
本工程为单缆无源系统,将为大楼提供全面无线通信信号覆盖,所设计的室内覆盖系统是为智能化大楼室内移动通讯信号覆盖的需要而提出的
目前湖北省化工行业采用历史总量法进行碳排放配额分配,历史总量法具有其自身的优势,如:对数据要求不高、操作简单、易于调整等,适用于生产工艺复杂、产品种类繁多的行业。但是从长远看,历史总量法也存在其不足,不能很好地利用市场手段达到节能减排最大化的目标。
流域研究框架——装机规划、发电能力、电价的三要素框架。我们在此前的电量测度模型中针对短期的来水波动进行量化,分析带来的业绩影响。
基于外场感知设备采集交通信息、气象信息、交通事件信息,通过数据中心进行数据的融合处理,最终实现运营管理、道路监控、收费稽核、安全救援、C端触达等功能,并对交通流进行控制等。
工业多变量时间序列(Industrial multivariate time series , MTS)是人们了解工业领域机器状态的重要视角。但由于数据采集难度和隐私的顾虑,用于构建智能维修研究和智能大模型的可用数据远远不够。因此,工业时序数据的生成具有重要意义。现有的研究多采用生成式对抗网络(Generative Adversarial Networks,GANs)来生成MTS数据。然而,由于生成器和鉴别器的联合训练,会使神经网络的训练过程不稳定。本文提出了一个基于时序增强的条件自适应扩散模型Diff-MTS,用于生成MTS。旨在更好地处理MTS数据复杂的时序依赖性和动态性。具体地说,提出了一种条件自适应最大均值差异(Conditional Adaptive -Maximum Mean Discrepancy, Ada-MMD)方法用于MTS数据生成。该方法提高了扩散模型的条件一致性。此外,建立了时间分解重构UNet (Temporal Decomposition Reconstruction, UNet, TDR-UNet),以捕获复杂的时序模式,进一步提高生成时序数据的质量。在C-MAPSS和FEMTO数据集上的实验表明,与基于GAN的方法相比,Diff-MTS方法在多样性、保真度和实用性方面都有明显的提高。
由于具有高效率、小尺寸、高稳定性等优点,DC-DC变换器已广泛应用于直流电机驱动、计算机系统、通信设备和其他工业系统。DC-DC变换器作为基础单元电路广泛应用于各类电力电子设备,其稳定性对电力电子设备在一些高科技行业的应用起着至关重要的作用,其中DC-DC降压变换器是最重要的开关变换器之一。随着新应用的不断发展,DC-DC降压变换器对动态响应速度和稳定性精度的要求越来越高。因此,以实现DCDC降压变换器输出电压精确调节为目标,选择最优的控制方法显得尤其重要
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址