在前面几个章节中,我们以正态分布为例,学习了如何对正态分布的均值和方差进行区间估计,从中可以看到对不同参数进行区间估计的重要性。与点估计相比,区间估计最大的特点就是能够在一定程度上反映估计量的精确程度。在给定置信度的前提下,估计精度越高,置信区间的长度就越小,反之亦然。因此,区间估计是一个非常有用的统计学工具,需要熟练掌握。但是,实际工作中,除了正态分布以外,还常常会碰到很多其他的重要分布(例如指数分布、0-1分布、泊松分布),它们也常被用于描述不同事件的不确定性。同理,对这些分布中的参数进行估计同样十分重要。本节就将重点讨论如何对常见分布的参数进行区间估计。首先考虑几个典型应用场景。