基于改进樽海鞘算法的锅炉NO_x排放模型优化研究_牛培峰

为了建立高效的NOx排放质量浓度预测模型,以某330 MW的煤粉锅炉为研究对象,利用自适应樽海鞘算法(ASSA)优化快速学习网(FLN)建立预测模型。首先用8个基准测试函数检测ASSA的性能并与其它3种算法进行对比,结果显示ASSA算法的收敛速度更快,寻优结果更好;将该模型与差分进化算法(DE)、粒子群算法(PSO)和樽海鞘算法(SSA)优化的快速学习网进行比较,结果表明ASSA-FLN模型具有更好的预测精度和泛化能力,可有效准确地预测煤粉炉的NOx排放质量浓度。

  • 2021-04-23
  • 收藏0
  • 阅读319
  • 下载0
  • 6页
  • pdf
  • 963.48M

评价

评分 :
   *