基于秘密共享与同态加密的纵向联邦学习方案研究

由于日趋严格的隐私保护政策,各种隐私保护算法被提出。联邦学习能够在保护用户隐私不被泄露的情形下,运行各种机器学习算法。介绍了在不同场景下适用的联邦学习框架,并以逻辑回归为例介绍了纵向联邦学习的几种常用实现方式;此外,对各种实现方式的优缺点及适用场景进行了分析。

  • 2022-01-20
  • 收藏0
  • 阅读73
  • 下载0
  • 17页
  • docx
  • 1.05M

评价

评分 :
   *