为了解决炼焦生产过程中焦炭质量指标中的灰分Ad,硫分Std,抗碎强度M40,耐磨强度M10难以实时测量的问题,建立了一种自适应差分进化算法(ADE)优化BP网络(ADE-BP)的焦炭质量预测模型。基于面向实际建立的输入输出指标体系,依据焦化厂实际炼焦生产过程中的历史数据,对模型进行训练和仿真,仿真结果表明,自适应差分进化算法优化BP网络的焦炭质量模型具有更高的预测精度。该研究为炼焦生产过程中焦炭质量指标难以实时监测的难题提供了一种新思路,可为炼焦行业高效低耗生产提供理论依据。
集团版专为集团型企业打造,包括集团管控系统、工厂系统、开发发布系统、运维管理系统、网关系统5大子系统,旨在实现集团内部多工厂、多部门之间的协同管理和数据共享。它通过构建一体化的工业物联网平台,整合各工厂的生产、设备数据和资源,打造集团统一的工业操作系统底座,为集团提供统一的管理视角和决策依据,提升集团整体运营效率和协同效应。
163页化工动设备讲义(PPT),163页化工动设备讲义(PPT),163页化工动设备讲义(PPT)
本文将介绍ChatGPT的特点、功能、技术架构、局限、产业应用、投资机会和未来。
DeepSeek是一种基于深度学习和人工智能的先进技术平台,专门设计用于金融领域的风险评估和决策优化。其核心技术架构结合了大规模数据处理、机器学习算法和高性能计算能力,能够快速处理和分析海量的结构化和非结构化数据。DeepSeek平台通过多层神经网络模型,能够自动提取数据中的复杂特征,并结合金融领域的专业知识,构建高精度的风险评估模型。其独特之处在于能够动态适应金融市场的变化,通过学习历史数据和实时数据,不断优化模型的预测能力
有的用户觉得DeepSeek不好用,其实可能恰恰是因为给DeepSeek喂了太多的提示词,限制了它的深度思考(如右图,按照四维度分析框架,只得出干巴巴的报告),它与指令性大模型不同,其实是不需要太长的提示词的
推理模型是在基座模型基础上再经过推理数据训练得到的模型,回答问题时会先通过思维链(CoT)逐步思考,再输出结果。 Deepseek R1模型属于一种推理模型。
这是用户和助手之间的对话。 用户提出一个问题,助手解决它,助手首先在脑海中思考推理过程,然后为用户提供答案。推理过程和答案分别包含在<思考></ 思考 >和<回答 ></ 回答 >标签中。即: <思考>推理过程在这里</ 思考> <回答>在这里回答</ 回答>
DeepSeek-R1推理大模型引爆了国内外 AI 社区,并火出了圈。最近,各个行业又掀起了接入 DeepSeek 的狂潮,大家唯恐落后于人
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址