【IEEETETCI】基于张量的工业网络流量恢复—基于BCD启发的潜在非线性和稀疏性神经逼近

由于工业物联网产生了大量的网络数据,张量作为紧凑的多维表示被广泛用于对工业网络流量进行建模。不稳定的数据采集往往会导致流量张量中实体的部分丢失,而传统的流量张量补全算法是基于线性代数和低秩的。然而,由于域变换和变换后的稀疏性之间的密切相关性,线性域变换不能准确地近似潜在的非线性相关性,导致恢复性能不足。本文提出了一种具有非线性变换和稀疏正则化的混合结构深度模型,以自动搜索最优域变换方法和相应的稀疏约束。该模型采用张量奇异值分解框架,由两个不同结构的神经网络组成。一个神经网络具有具有完全连接网络的自动编码器结构,仅从部分观测到的数据中恢复丢失的实体,卷积神经网络构造另一个网络来约束变换域中的稀疏性。此外,我们基于变换张量的局部光滑性施加了额外的拉普拉斯约束,以克服连续的数据丢失。受块坐标下降算法的启发,交替训练相互匹配的非线性变换器和稀疏正则化子。对工业网络流量的大量实验结果表明,我们提出的模型在不同的采样率和模式下都优于最先进的方法。

  • 2024-06-17
  • 收藏0
  • 阅读90

方案详情

评价

评分 :
   *