煤矿行业属于重资产行业,设备机器在煤矿生产中扮演着重要的角色。煤矿设备具有价格昂贵、数量多、种类杂(采掘、运输、通风系统、压风系统、排水系统等) 、工作环境恶劣(高温、潮湿、粉尘等)、工作条件多变、负荷变化大等特点。 煤矿设备多处于井下作业,工作空间较小,环境条件较差,经常受到磨损和损坏,加之维护不到位,设备老化、失效的情况时有发生;一旦设备在使用过程中发生故障,将给煤矿生产带来巨大经济损失或安全隐患。
中服云数字孪生平台以物联网平台+数据中台为坚实基础,以2D/3D/GIS为核心展示形式,致力于打造一个从设备原始数据到孪生应用落地的一站式数智化平台。
人工智能正以前所未有的速度重塑全球科技、经济与社会格局。从技术基座的迭代升级到产业应用的深度融合,从社会治理的智能化转型到可持续发展路径的探索,人工智能已成为推动新一轮科技革命和产业变革的核心引擎。本白皮书立足全球视野,通过八大篇章系统性深入研究,全面呈现人工智能领域技术演进、产业变革与社会影响,为读者勾勒出一幅人工智能发展的全局画卷。
储能技术多元发展,各有不同的应用场景。我国新型储能技术基本上与国际先进水平并跑,压缩空气储能、储热储冷、锂离子电池、液流电池和钠离子电池技术已达到或接近世界先进水平,
中服云作为国内领先的工业物联网平台厂商,其技术架构与功能特性高度适配火山地震监测场景的需求
人工智能的迅速发展将深刻改变人类社会生活、改变世界。为抢抓人工智能 发展的重大战略机遇,构筑我国人工智能发展的先发优势,加快建设创新型国家 和世界科技强国,按照党中央、国务院部署要求,制定本规划
:整合多模态医学数据,包括图像、文本、声音、 传感器数据和基因组、转录组、蛋白质组等多组学数据,完成 不同时间点、条件下的数据对齐,构建医学科研数据资源库。 利用数据融合模型与方法,提供跨模态标注算法和标注工具, 揭示跨模态数据之间的语义关联性,帮助分析其相互作用和整 合效果,提高诊断和分析的准确性。面向不同类型的数据,提 供计算机视觉、自然语言处理、图学习等多类算法,对多模态 数据进行特征提取、模型训练、统计分析等,以识别疾病标志 物和模式。提供科研合作平台,促进跨学科研究团队的协作, 支持将分析结果转化为临床辅助决策支持工具,辅助医生进行 更准确的诊断和治疗规划。
为抢抓人工智能发展新机遇,支持人工智能技术赋能智能终端产品,推动智能终端产业高质量跨越 式发展,加快建设国际国内领先的人工智能终端产业集聚区,按照《关于加快发展新质生产力进一步推 进战略性新兴产业集群和未来产业高质量发展的实施方案》《深圳市加快打造人工智能先锋城市行动方 案》等文件要求,结合我市实际,制定本行动计划
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址