AI大模型训练和推理拉动智能算力需求快速增长。a)模型迭代和数量增长拉动AI算力需求增长:从单个模型来看,模型能力持续提升依赖于更 大的训练数据量和模型参数量,对应更高的算力需求;从模型的数量来看,模型种类多样化(文生图、文生视频)和各厂商自主模型的研发,均 推动算力需求的增长。b)未来AI应用爆发,推理侧算力需求快速增长:各厂商基于AI大模型开发各类AI应用,随着AI应用用户数量爆发,对应推 理侧算力需求快速增长。
中服云数字孪生平台以物联网平台+数据中台为坚实基础,以2D/3D/GIS为核心展示形式,致力于打造一个从设备原始数据到孪生应用落地的一站式数智化平台。
人工智能正以前所未有的速度重塑全球科技、经济与社会格局。从技术基座的迭代升级到产业应用的深度融合,从社会治理的智能化转型到可持续发展路径的探索,人工智能已成为推动新一轮科技革命和产业变革的核心引擎。本白皮书立足全球视野,通过八大篇章系统性深入研究,全面呈现人工智能领域技术演进、产业变革与社会影响,为读者勾勒出一幅人工智能发展的全局画卷。
储能技术多元发展,各有不同的应用场景。我国新型储能技术基本上与国际先进水平并跑,压缩空气储能、储热储冷、锂离子电池、液流电池和钠离子电池技术已达到或接近世界先进水平,
近年来,AI?快速发展。算力、存力、运力以及模型能力的协同发展水平成为衡量地区数字竞争力的关键。算力支撑数据处理与计算,存力保障数据的高效存储与调用,运力保障数据的跨域传输,模型能力则深度释放算力在各场景的应用效能。综合算力是指以算力为核心、存力为基础、运力为纽带、模力为赋能、环境为发展保障的多维度协同能力体系,是衡量数字经济发展的核心生产力指标。如何更科学评估我国综合算力发展现状,全面把握区域产业短板与优势,成为推动数字经济高质量发展的重要命题。
2022年5月,全球首款全自动生成的32位RISC-VCPU"启蒙1号"由中国科学院计算技术研究所利用AI技术成功设计。AI的利用,将生产周期从数月降至5小时生成400万逻辑门,效率提升至1/1000,标志着芯片设计进入智能化时代
在新一轮科技革命和产业变革深入推进的背景下,高质量数据集已成为支撑人工智能发展和行业智能化转型的关键基础。近年来,国务院国资委围绕实施央企"人工智能+"行动和产业焕新行动,将高质量数据集建设作为提升中央企业智能化能力和核心竞争力的重要抓手,通过专题部署、示范发布和平台建设等方式,持续推动数据资源向可用、可管、可共享的数据资产转化。与
近年来,国家高度重视数据产业发展,将数据列为生产要素,并持续强化数据标准化工作。自2021年起,《国家标准化发展纲要》《“十四五”数字经济发展规划》《关于构建数据基础制度更好发挥数据要素作用的意见》等多项政策文件陆续出台,大力推动了公共数据、企业数据、个人数据的标准体系建设。2024年,国家发展改革委、国家数据
2022年2月,"东数西算"拉开序幕。国家发展改革委等部委联合印发通知,同意在京津冀、长三角、粤港澳大湾区、成渝、内蒙古、贵州、甘肃、宁夏等8地启动建设国家算力枢纽节点,并规划了10个国家数据中心集群。
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址