针对量子粒子群算法(QPSO)在迭代后期出现种群多样性缺失和容易陷入局部最优的问题,提出了一种基于交叉操作的改进算法;在改进算法中,考虑了粒子的历史最优位置和次优位置,用以扩大粒子的搜索范围;同时,将遗传算法的交叉操作运用到位置的更新中,以增加种群的多样性,进而提高算法的收敛性;在性能测试中,将改进算法与原始的量子粒子群算法、基于差分进化的QPSO和基于黑洞探索的QPSO在收敛精度和鲁棒性方面进行了比较;最后,运用改进算法对一类具有投资数量限制的投资组合问题进行了求解,并与遗传算法、粒子群算法和标准的量子粒子群算法的寻优结果进行了对比。