基于蜂群K_means聚类模型的协同过滤推荐算法_李艳娟

针对目前协同过滤推荐算法的推荐质量和推荐效率低的问题,提出了一种基于改进蜂群K-means聚类模型的协同过滤推荐算法。首先,根据用户属性信息,采用改进蜂群K-means算法对用户进行聚类,建立用户聚类模型;然后,计算目标用户与用户聚类模型中各聚类中心的距离,其中距离最近的类为目标用户的检索空间;最后,从检索空间中依据用户-项目评分矩阵通过相似度计算搜索目标用户的最近邻居,由最近邻居的信息产生推荐列表。实验结果表明,该算法降低了平均绝对误差值,缩短了运行时间,提高了推荐质量和推荐效率。

  • 2021-05-06
  • 收藏0
  • 阅读160
  • 下载0
  • 9页
  • pdf
  • 764.51M

评价

评分 :
   *