应用于软件缺陷预测模型的量子粒子群优化BP算法_洪晓彬

为了降低软件测试的成本并改善软件缺陷预测的能力,提出将量子粒子群算法和BP神经网络相结合,以提高软件缺陷预测模型的准确性和适用性。该算法以3层BP神经网络结构为基础,运用量子粒子群优化算法对BP神经网络的权值和阈值进行优化,从而在一定程度上克服了传统BP神经网络算法在收敛性能上的不足。仿真模拟实验结果表明:相比传统BP神经网络和粒子群优化BP神经网络,提出算法能够更有效地提高BP神经网络的收敛速度,防止陷入局部极小,提升软件缺陷预测的准确率、效率。

  • 2021-05-06
  • 收藏0
  • 阅读181
  • 下载0
  • 6页
  • pdf
  • 266.46M

评价

评分 :
   *