基于遗传算法的改进时序预测模型研究_李思莉

云计算系统通过对存储、软件、服务等资源进行统一调度来为用户提供所需的服务。用户的需求具有多样性、多变性,使用弹性伸缩技术可以提高用户满意度,很好地解决资源利用率和应用系统之间的矛盾,是云计算的关键技术之一。然而,网络应用程序的工作负载通常是动态的,并且很难预测。因此,云计算中Web应用的关键技术是根据负载进行资源的动态分配,这是研究的热点,也是难点。目前,针对动态伸缩算法,提出的解决方案多是独立的、单一的或基于过去资源使用率进行提前预测。但这些方法容易导致资源利用不足。该文提出利用遗传算法改进时序预测模型ARIMA计算所需的虚拟主机数,以实现提高资源利用率,达到资源快速伸缩的目的。所提出的模型已经用几个基准工作负载进行了验证,在虚拟主机数和响应时间方面有一定的改善。

  • 2021-04-21
  • 收藏0
  • 阅读340
  • 下载0
  • 5页
  • pdf
  • 1.63M

评价

评分 :
   *