结合CNN和catboost算法的恶意安卓应用检测模型_苏庆

针对恶意安卓应用程序检测中存在的特征维度大、检测效率低的问题,结合卷积神经网络CNN良好的特征提取和降维能力以及catboost算法无需广泛数据训练即可产生较好分类结果的优点,构建一个CNN-catboost混合恶意安卓应用检测模型。首先通过逆向工程获取安卓应用的权限、API包、组件、intent、硬件特性和OpCode特征等静态特征并映射为特征向量,再在特征处理层使用卷积核对特征进行局部感知处理以增强信号;然后使用最大池化对处理后的特征进行下采样,降低维数并保持特征性质不变;接着将处理后的特征作为catboost分类层的输入向量,利用遗传算法的全局寻优能力对catboost模型进行调参,进一步提升分类准确率;最后对训练完成的模型,分别使用已知和未知类型的安卓应用程序数据集作实际应用测试。实验结果表明CNN-catboost模型调参用时较少,在预测精度和检测效率上也展示出较为良好的效果。

  • 2021-04-22
  • 收藏0
  • 阅读173
  • 下载0
  • 9页
  • pdf
  • 774.47M

评价

评分 :
   *