近年来,深度学习技术的重大进步促进了能源系统智能健康监测方法的发展。然而,在处理核能系统等安全关键能源系统时,具有点估计的传统深度学习模型无法解释预测中的固有不确定性,这一局限性对为关键操作提供可靠和值得信赖的决策支持提出了挑战。为了克服这一挑战,本研究提出了一种新的智能监测方法,该方法集成了不确定性感知的深度神经网络。首先,提出了一个基于时空状态矩阵的信号预处理方法,以提高特征提取能力,从而有效地整合各种多源数据。其次,开发了一种概率分布,为所有网络参数生成预测不确定性,从而能够评估模型输出的置信度,不仅适用于已知的操作场景,也适用于未知的操作场景。最后,使用已建立的先进核能研究平台和公共核事故模拟平台进行实验,确保所提出方法在实际环境中的有效性和适用性。总体而言,拟议的方法显著提高了监测输出的可靠性和可信度,同时降低了与安全关键能源系统决策过程相关的风险。关键词:安全关键能源系统、不确定性感知深度学习、智能健康监测、值得信赖的决策。