海底控制模块(SCM)的可靠性评估是保证海底油气生产安全稳定的关键。SCM组件的故障概率和可靠性取决于时间和工作条件。为了分析考虑不同工作条件的SCM的可靠性,本文提出了一种新的基于数字孪生和动态贝叶斯网络(DBN)的模型,利用历史工作条件数据进行可靠性分析。在所提出的框架中,关键工况数据是通过基于传感器的数字孪生(DT)仿真获得的,并用于动态更新DBN可靠性分析模型中的参数,进而对实际的单片机电气系统进行了可靠性评估。通过实验结果,明确了系统中最可能的故障模式和最薄弱的组件。最后,基于该方法的后向分析能力进行故障预测,以预测发生意外情况时设备出现故障的概率。