动车组故障|基于数字孪生的动车组故障预测

目前,我国动车组维修方式主要为故障事后维修和计划性维修,该方式往往造成维修不足或过度维修等问题。近年来,故障预测与健康管理(Prognostic and Health Management,PHM)系统在动车组领域被广泛研究与应用,现行PHM系统主要采用基于阈值或基于机理的研究方法进行动车组故障预测。基于阈值的动车组故障预测具有简单直观、易于理解、易于实现等优点,但当设备工作环境、负载、温度等因素发生变化时,监测参数可能出现不同程度的波动,而固定阈值可能无法很好地适应变化,并且该方法很难捕捉监测参数的潜在趋势和变化规律;基于机理的故障预测方法能够深入理解设备或系统的工作原理和故障机理,利用物理模型、数学模型等手段预测设备故障状态。由于动车组的工作原理和故障机理非常复杂,涉及多种因素的相互作用,并且对于不同类型的设备,需要针对不同机理进行调整和优化。因此,在研究中可结合数学模型、统计学方法、机器学习、数据挖掘、信号处理等技术手段,增强故障预测的准确性和可靠性。

  • 2025-05-26
  • 收藏0
  • 阅读441

方案详情

评价

评分 :
   *