为提高土壤含水量预测精度,基于物联网监测数据,提出了粒子群算法(PSO)优化BP神经网络的土壤含水量预测方法。首先应用主成分分析法筛选出影响土壤含水量的关键影响因子,然后构建8-5-1的BP神经网络拓扑结构,应用粒子群算法优化BP神经网络的初始权值和阈值。结果表明:与传统BP神经网络相比,新模型优化了网络结构,避免了陷入局部最优解,具有良好的预测效果;模型的评价指标平均绝对误差、平均绝对百分误差、误差均方根分别为0.259 2、0.010 5和0.135 6,与单一BP神经网络相比,预测精度更高,可满足实际的土壤含水量预测的需要。