制造业的升级和发展使得预测性维护越来越重要,但是传统的预测性维护在很多情况下已经不能满足发展的需要。近年来,基于数字孪生的预测性维修已成为制造业领域的研究热点。本文首先介绍了数字孪生技术和预测性维护技术的一般方法,分析了两者之间的差距,指出了利用数字孪生技术实现预测维修的重要性。其次,介绍了基于数字孪生的预测性维修方法(PdMDT:Predictive maintenance method based on digital twin),介绍了其特点,并给出了其与传统预测性维修的区别。接着,介绍了该方法在智能制造、电力行业、建筑行业、航空航天行业、船舶行业中的应用,并总结了这些领域的最新进展。 最后,提出了一个针对制造业设备维护的参考框架,该框架描述了设备维护的具体实施过程,并以工业机器人为例,讨论了PdMDT的局限性、挑战和机遇。