综合采用隐马尔可夫模型(HMM)和支持向量机算法(SVM),提出一种基于隐马尔科夫模型(HMM)优化的地图匹配算法。引入机器学习方法,利用支持向量机(SVM)算法对基于隐马尔可夫模型的地图匹配算法进行了优化,使用机器学习方法 SVM训练状态转移矩阵,提高了状态转移概率的准确性。提出基于多重因素权重(距离、速度和方向)计算观测概率的方法,同时考虑了路段的宽度信息,提高了地图匹配的匹配精确度。基于真实数据对算法进行验证,与原始HMM算法相比,文中提出的优化算法在提高匹配精确度方面具有较好的效果,符合估计城市路径行程时间的数据需求。