电力用户侧大数据分析与并行负荷预测

随着智能电网、通信网络技术和传感器技术的发展,电力用户侧数据呈指数级增长、复杂程度增大,逐步构成了用户侧大数据。传统的数据分析模式已无法满足需求,迫切需要解决电力用户侧的大数据在分析与处理方面的难题。该文分析电力用户大数据的来源,针对电力用户侧大数据的数据量大、种类繁多与速度快等特点,指出电力用户侧的 大数据在数据存储、可用性、处理等方面面临的挑战。结合云计算技术提出一种电力用户侧大数据分析处理平台,将智能电表、SCADA 系统和各种传感器中采集的数据整合,并利用并行化计算模型 MapReduce 与内存并行化计算框架Spark 对电力用户侧的大数据进行分析。提出基于随机森林算法的并行负荷预测方法,将随机森林算法进行并行化,对历史负荷、温度、风速等数据进行并行化分析,缩短负荷预测时间和提高随机森林算法对大数据的处理能力。设计并实现基于 Hadoop 的电力用户侧大数据并行负荷预测原型系统,包括数据集群的管理、数据管理、预测分类算法库等 功能。采用不同大小的数据集对并行化随机森林算法进行负荷预测实验,实验结果表明,并行化随机森林算法的预测精度明显高于决策树的预测精度,且在不同数据集上预测精度普遍高于决策树的预测精度,能够较好的对大数据进行分析处理。

  • 2021-04-17
  • 收藏0
  • 阅读130
  • 下载0
  • 11页
  • pdf
  • 1.53M

评价

评分 :
   *