维护的主要目标很简单:提升设备性能并增加利润。为了实现这些目标,团队必须专注于提高资产的可靠性和可用性,从而减少停机时间。其中最有效的方法之一就是监测机器状态。状态监测可以帮助我们评估每一项资产,提供关于其运行行为和当前状态的重要信息。最常用且高效的监测技术就是振动分析。它常用于识别旋转设备的早期磨损迹象,并预测可能的故障。通过持续监测振动水平,工程师可以察觉设备是否开始出现故障的迹象。这使得他们可以在故障发生前采取行动,从而防止昂贵的停机和损坏。
本工程建筑为办公生产大楼,由地上32层、地下3层组成;其中1-5层为裙楼、6-32层为塔楼。地下1-3层含停车场、人防、设备用房;地上部分:主楼一层含公共大厅;5为设备转换层,11、22层为避难层,33层设置机房;6-10层、12-21层、23-32层为办公生产用房。
随着能源互联网的发展,能源系统智能化特征越来越突出,能 源开发、生产、传输、存储、消费 全过程的智能化水平快速提升,所 涉及的设备和系统将数以亿计,在 规划和运行过程中将产生海量数据, 且结构复杂、种类繁多、因实时性 要求高而快速增长。这些数据贯穿 着能源互联网各个环节,蕴含着巨 大的价值。
本工程为单缆无源系统,将为大楼提供全面无线通信信号覆盖,所设计的室内覆盖系统是为智能化大楼室内移动通讯信号覆盖的需要而提出的
163页化工动设备讲义(PPT),163页化工动设备讲义(PPT),163页化工动设备讲义(PPT)
这种让液体以压的方式,使物体克服阻力运动,也就是传递动力(力和速度)的技术,就是液压传动,也被简称为液压。 因为相比较上述的动压传动而言,这里的液体流动速度可以慢得多,所以,也被称为静压传动、静液压传动。
C-MAPSS是由NASA开发并公开可用的一款仿真软件,能够模拟发动机在不同飞行条件下的运行情况,包括各种操作设置、环境条件和潜在的故障模式。在官方数据共享平台上:https://data.nasa.gov,有一个大型公开可用的数据集,包含了发动机从开始运行到故障发生的所有模拟数据。该数据集是一个多变量的时间序列,通过多个传感器通道记录的数值来表征故障演变。今天我们要做的就是利用该数据集来预测发动机的剩余使用寿命。
在上一篇总结中,我们用分段线性模型来近似发动机性能衰退的不同阶段,最终的预测效果有了极大的提升。今天我们再基于分段线性模型,尝试使用XGBoost算法来对RUL进行预测,对比一下与LSTM谁的性能更优一些。
在上一篇总结中我们使用XGBoost算法预测了发动机的剩余使用寿命,结果差强人意。今天,我们继续学习一种新的算法:随机森林(Random Forest)。
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址