针对基于传统模糊C均值聚类的网络入侵检测模型存在分类效果不佳,且容易出现局部极值的问题,提出了一种基于量子人工鱼群的半监督模糊核聚类算法。该算法使用少量的标记数据和大量未知标记数据生成网络入侵检的分类,并通过核距离的方式构建了模糊C均值聚类算法的新目标函数,此外,结合了量子人工鱼群算法来解决模糊核聚类算法的全局最优解问题,适用于并行执行架构。在KDD Cup 99网络入侵检测数据上的仿真实验结果表明,相比于基于FCM和PSO-FCM的入侵检测模型,以及基于此提出的算法入侵检测模型具有更好的检测率。