基于深度学习VGG网络模型的海洋单细胞藻类识别算法_王羽徵

为更好地对海洋中单细胞藻类进行有效识别,本研究提出了基于改进式VGG16网络模型的单细胞藻类识别算法—AlgaeNet,在传统VGG网络模型基础上,通过减少卷积核数量,并添加BatchNormalization层进行神经网络模型加速。结果表明:在相同试验条件下,本研究中提出的AlgaeNet算法在训练过程中的损失值收敛速度及对测试集样本(卵形小球藻Chlorella ovalis与小等刺硅鞭藻Dictyocha fibula Ehrenberg)的预测准确率上升速度较传统VGG、AlexNet网络模型优势明显,识别准确率可达99.317%。研究表明,基于改进式VGG16网络模型的单细胞藻类识别算法AlgaeNet在单细胞藻类识别领域具有较好的分类识别性能,可实现海洋中藻类的准确识别。

  • 2021-04-21
  • 收藏0
  • 阅读355
  • 下载0
  • 6页
  • pdf
  • 455.44M

评价

评分 :
   *