【AEI】先验知识增强无监督形状学习用于工业过程中未知的正常工作条件发现

未知异常工况的发现是精细化工业生产的关键,集群工业时间序列是发现未知工况类型的有效方法。然而,从工业时间序列中发现未知的异常工作状态对现有的时间序列聚类方法来说是一个挑战。本研究提出了一种新的先验知识增强无监督形状集学习方法,通过可解释的子序列发现异常和有意义的工作状态。提出了一种先验特征提取模块,将先验知识转化为数据模型的可识别形式。先验知识包含异常工作状态信息,知识增强聚类模块可以通过将先验特征与数据特征相结合来学习表示异常工作状态的信息形状集。此外,先验知识和数据的偏好在学习阶段会自我调整。对实际铝电解过程、模拟田纳西伊斯曼过程和连续搅拌槽加热器过程的数值试验结果验证了所提出方法的优越性能。所提出的方法为先验知识和数据模型的融合提供了新的视角。它还为解决工业过程中异常未知工况发现问题提供了一种新方法。关键词:先验知识,铝电解,时间序列,Shapelet,聚类

  • 2024-10-08
  • 收藏0
  • 阅读91

方案详情

评价

评分 :
   *