工业互联网平台中的连接与信息安全有着非常密切的关系,连接越多,关系越复杂,信息安全的潜在问题也就越严重。本文对连接两端的数据和网络环境进行了分析,研究了数据在受到各种非正常改变时可能带来的风险问题。数据即使内容没有被改变,但是只要被非法访问或时序出现偏移,同样也会给工业互联网带来灾难性的影响。为了防止非法数据入侵,必须增强工业互联网信息安全方面的感知能力,使之具有足够强大的免疫功能。这就需要在工业互联网平台中建立一种数据行为的侦测机制,可以通过逻辑计算或机器学习的方法实现这种机制。本文将工业互联网平台的连接构成、信息安全、数据行为和行为侦测构成一个完整的研究对象,建立它们之间的关系模型,为深入研究工业互联网信息安全问题提供良好的基础。