建立微分方程只是解决问题的第一步,通常需要求出方程的解来说明实际现象,并 加以检验。如果能得到解析形式的解固然是便于分析和应用的,但是我们知道,只有线 性常系数微分方程,并且自由项是某些特殊类型的函数时,才可以肯定得到这样的解, 而绝大多数变系数方程、非线性方程都是所谓“解不出来”的,即使看起来非常简单的 方程如 y 2 x 2 dx dy = + ,于是对于用微分方程解决实际问题来说,数值解法就是一个十 分重要的手段。 §1 常微分方程的离散化 下面主要讨论一阶常微分方程的初值问题,其一般形式是 ? ? ? ? ? = ≤ ≤ = ( ) 0 ( , ) y a y a x b f x y dx dy (1)