12篇顶会论文,深度学习时间序列预测经典方案汇总

早期的时间序列预测主要模型是诸如ARIMA这样的单序列线性模型。这种模型对每个序列分别进行拟合。在ARIMA的基础上,又提出了引入非线性、引入外部特征等的优化。然而,ARIMA类模型在处理大规模时间序列时效率较低,并且由于每个序列分别独立拟合,无法共享不同序列存在的相似规律。深度学习模型在NLP、CV等领域取得了成功应用后,也被逐渐引入到解决时间序列预测问题中。通过不同序列共享一个深度学习模型,让模型能从多个序列中学到知识,并且提升了在大规模数据上的求解效率。

  • 2022-11-21
  • 收藏0
  • 阅读265

方案详情

评价

评分 :
   *