廊道 (Corridor) 的概念最早出现在岛屿生物地理学动态理论 (MacAr-thue&Wilson) 的保护应用中。基于该理论,Wilson 和 Willis 于 1975 年结合Levins的复合种群概念提出利用廊道连接相互隔离的生境斑块能够有效减少物种灭绝率。Merriam、Kupfer等人通过研究证实了一部分植物及小型哺乳类动物利用廊道繁衍扩散的猜测,廊道对于保护生物多样性切实有效。由此可见,廊道概念的提出侧重于保护生物多样性的层面(Forman)。
本工程建筑为办公生产大楼,由地上32层、地下3层组成;其中1-5层为裙楼、6-32层为塔楼。地下1-3层含停车场、人防、设备用房;地上部分:主楼一层含公共大厅;5为设备转换层,11、22层为避难层,33层设置机房;6-10层、12-21层、23-32层为办公生产用房。
随着能源互联网的发展,能源系统智能化特征越来越突出,能 源开发、生产、传输、存储、消费 全过程的智能化水平快速提升,所 涉及的设备和系统将数以亿计,在 规划和运行过程中将产生海量数据, 且结构复杂、种类繁多、因实时性 要求高而快速增长。这些数据贯穿 着能源互联网各个环节,蕴含着巨 大的价值。
本工程为单缆无源系统,将为大楼提供全面无线通信信号覆盖,所设计的室内覆盖系统是为智能化大楼室内移动通讯信号覆盖的需要而提出的
在工业过程监测中,长期平稳特征在表示基本统计信息方面起着重要作用。然而,基于自编码器的方法通过实现原始数据的数值近似来提取深度特征,这可能会导致隐藏的平稳信息的破坏。为了解决这个问题,本文提出了一种基于平稳特征重构的协整堆叠自编码器模型,以在模型训练过程中保持长期均衡关系。推理标准。通过重构平稳特征,所提出的网络能够保留非平稳变量之间的有益关系。最后,在两种情况下验证了所提出方法的故障检测性能。
钢包炉气精炼、钢水温度、极梯度升压;光梯度增强机;灰狼优化:SHapley加法运算
现代工业装置普遍表现出规模大、过程长、多单元协同作业的特点,这使得时空分布具有内在性,质量稳定性通常难以保证。本文提出了一种基于质量相关时空信息分析的多单元协同监控框架。在该框架中,分别从单元级和过程级分析时空属性。首先,对于每个操作单元,采用当前特征提取策略构建质量监督时空支持区域。在该策略中,时间动态特征由具有注意力机制的长短期记忆(LSTM)网络提取。同时,利用互信息核主成分分析方法提取空间特征。其次,对于全厂过程,构建了一个三阶多单元时空特征张量进行特征融合。通过张量分解位置,探索了单元之间的相互关联和过程中的质量继承,并将原始特征空间分解为几个子空间。最后,在子空间上开发了一个多单元协同监测模型,并通过贝叶斯融合给出了综合监测结果,可以对监测结果进行合理的解释。所提出的框架在实际的热轧带钢生产过程中得到了验证。
现代制造过程通常包含多个子过程,过程变量的时空特征难以提取,这给传统的质量相关故障诊断带来了重大挑战。为了解决这个问题,我们提出了一种由图注意力网络驱动的故障检测模型——集成门控递归单元规范变量分析(GATRU-CVA)。首先,利用领域专家的知识和历史数据构建子块知识图。接下来,为全局变量构建了图注意力网络(GAT)的空间特征提取器。此外,使用子块知识图将全局空间特征划分为子块,并构建相应的时间特征提取器。然后,考虑到过程动态特性,使用CVA基于时空特征对过程进行建模,并计算相应的统计数据。阈值由核密度估计器(KDE)方法确定。最后,使用热轧带钢机过程(HSMP)的实际生产数据来验证所提出的模型。结果表明,该方法对HSMP的正确监测率(CMR)为97%与其他比较故障检测方法相比。关键词:规范变量分析、故障检测、门控递归单元(GRU)、图注意力网络(GAT)知识图。
随着工业技术的快速发展,工业过程变得越来越复杂,呈现出大规模、多单元协作的特点。然而,目前的大多数故障检测方法都侧重于非线性、动态和其他特征,而忽略了时空信息。为了解决这个问题,本文提出了一种基于自适应时空解耦卷积网络的质量相关故障检测方法。首先,时间图卷积网络和空间图卷积网络以联合训练的形式有机结合。其次,考虑到固定图结构不能反映节点之间的动态关系,我们提出了一种自适应加权任务机制来构建嵌入先验知识的动态相关图。多注意力机制用于整合时空信息。此外,我们设计了一个解耦层来避免信息冗余。最后,利用所提出的时空图卷积网络建立回归模型,通过解耦层提取与质量相关的潜在变量,并基于Kullback-leibler散度构建统计量,以热轧带钢和Tennessee Eastman工艺为例说明了所提出方法的有效性和可行性关键词:图卷积神经网络;热轧带钢工艺;质量相关故障检测、时空关联
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址